当前位置: 首页 > news >正文

wordpress页面目录下seo视频教学网站

wordpress页面目录下,seo视频教学网站,分公司注册,小程序致美发型设计训练 RAG(Retrieval-Augmented Generation)模型涉及多个步骤,包括准备数据、构建知识库、配置检索器和生成模型,以及进行训练。以下是一个详细的步骤指南,帮助你训练 RAG 模型。 1. 安装必要的库 确保你已经安装了必…

训练 RAG(Retrieval-Augmented Generation)模型涉及多个步骤,包括准备数据、构建知识库、配置检索器和生成模型,以及进行训练。以下是一个详细的步骤指南,帮助你训练 RAG 模型。

1. 安装必要的库

确保你已经安装了必要的库,包括 Hugging Face 的 transformersdatasets,以及 Elasticsearch 用于检索。

pip install transformers datasets elasticsearch

2. 准备数据

构建知识库

你需要一个包含大量文档的知识库。这些文档可以来自各种来源,如维基百科、新闻文章等。

from datasets import load_dataset# 加载示例数据集(例如维基百科)
dataset = load_dataset('wikipedia', '20200501.en')# 获取文档列表
documents = dataset['train']['text']
将文档索引到 Elasticsearch

使用 Elasticsearch 对文档进行索引,以便后续检索。

from elasticsearch import Elasticsearch# 初始化 Elasticsearch 客户端
es = Elasticsearch()# 定义索引映射
index_mapping = {"mappings": {"properties": {"text": {"type": "text"},"title": {"type": "text"}}}
}# 创建索引
index_name = "knowledge_base"
if not es.indices.exists(index=index_name):es.indices.create(index=index_name, body=index_mapping)# 索引文档
for i, doc in enumerate(documents):es.index(index=index_name, id=i, body={"text": doc, "title": f"Document {i}"})

3. 准备训练数据

加载训练数据集

你需要一个包含问题和答案的训练数据集。

from datasets import load_dataset# 加载示例数据集(例如 SQuAD)
train_dataset = load_dataset('squad', split='train')
预处理训练数据

将训练数据预处理为适合 RAG 模型的格式。

from transformers import RagTokenizer# 初始化 tokenizer
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token")def preprocess_data(examples):questions = examples["question"]answers = examples["answers"]["text"]inputs = tokenizer(questions, truncation=True, padding="max_length", max_length=128)labels = tokenizer(answers, truncation=True, padding="max_length", max_length=128)["input_ids"]return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": labels}# 预处理训练数据
train_dataset = train_dataset.map(preprocess_data, batched=True)

4. 配置检索器和生成模型

初始化检索器

使用 Elasticsearch 作为检索器。

from transformers import RagRetriever# 初始化检索器
retriever = RagRetriever.from_pretrained("facebook/rag-token", index_name="knowledge_base", es_client=es)
初始化生成模型

加载预训练的生成模型。

from transformers import RagSequenceForGeneration# 初始化生成模型
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token", retriever=retriever)

5. 训练模型

配置训练参数

使用 Hugging Face 的 Trainer 进行训练。

from transformers import Trainer, TrainingArguments# 配置训练参数
training_args = TrainingArguments(output_dir="./results",evaluation_strategy="steps",eval_steps=1000,per_device_train_batch_size=4,per_device_eval_batch_size=4,num_train_epochs=3,warmup_steps=500,weight_decay=0.01,logging_dir="./logs",logging_steps=10,
)# 初始化 Trainer
trainer = Trainer(model=model,args=training_args,train_dataset=train_dataset,eval_dataset=train_dataset,
)# 开始训练
trainer.train()

6. 保存和评估模型

保存模型

训练完成后,保存模型以供后续使用。

trainer.save_model("./rag-model")
评估模型

评估模型的性能。

from datasets import load_metric# 加载评估指标
metric = load_metric("squad")def compute_metrics(eval_pred):predictions, labels = eval_preddecoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)result = metric.compute(predictions=decoded_preds, references=decoded_labels)return result# 评估模型
eval_results = trainer.evaluate(compute_metrics=compute_metrics)
print(eval_results)

完整示例代码

以下是一个完整的示例代码,展示了如何训练 RAG 模型:

from datasets import load_dataset
from elasticsearch import Elasticsearch
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration, Trainer, TrainingArguments, load_metric# 加载示例数据集(例如维基百科)
dataset = load_dataset('wikipedia', '20200501.en')
documents = dataset['train']['text']# 初始化 Elasticsearch 客户端
es = Elasticsearch()# 定义索引映射
index_mapping = {"mappings": {"properties": {"text": {"type": "text"},"title": {"type": "text"}}}
}# 创建索引
index_name = "knowledge_base"
if not es.indices.exists(index=index_name):es.indices.create(index=index_name, body=index_mapping)# 索引文档
for i, doc in enumerate(documents):es.index(index=index_name, id=i, body={"text": doc, "title": f"Document {i}"})# 加载训练数据集(例如 SQuAD)
train_dataset = load_dataset('squad', split='train')# 初始化 tokenizer
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token")def preprocess_data(examples):questions = examples["question"]answers = examples["answers"]["text"]inputs = tokenizer(questions, truncation=True, padding="max_length", max_length=128)labels = tokenizer(answers, truncation=True, padding="max_length", max_length=128)["input_ids"]return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": labels}# 预处理训练数据
train_dataset = train_dataset.map(preprocess_data, batched=True)# 初始化检索器
retriever = RagRetriever.from_pretrained("facebook/rag-token", index_name="knowledge_base", es_client=es)# 初始化生成模型
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token", retriever=retriever)# 配置训练参数
training_args = TrainingArguments(output_dir="./results",evaluation_strategy="steps",eval_steps=1000,per_device_train_batch_size=4,per_device_eval_batch_size=4,num_train_epochs=3,warmup_steps=500,weight_decay=0.01,logging_dir="./logs",logging_steps=10,
)# 初始化 Trainer
trainer = Trainer(model=model,args=training_args,train_dataset=train_dataset,eval_dataset=train_dataset,
)# 开始训练
trainer.train()# 保存模型
trainer.save_model("./rag-model")# 加载评估指标
metric = load_metric("squad")def compute_metrics(eval_pred):predictions, labels = eval_preddecoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)result = metric.compute(predictions=decoded_preds, references=decoded_labels)return result# 评估模型
eval_results = trainer.evaluate(compute_metrics=compute_metrics)
print(eval_results)

注意事项

  1. 数据质量和数量:确保知识库中的文档质量高且数量充足,以提高检索和生成的准确性。
  2. 模型选择:根据具体任务选择合适的 RAG 模型,如 facebook/rag-tokenfacebook/rag-sequence
  3. 计算资源:RAG 模型的训练和推理过程可能需要大量的计算资源,确保有足够的 GPU 或 TPU 支持。
  4. 性能优化:可以通过模型剪枝、量化等技术优化推理速度,特别是在实时应用中。

参考博文:RAG(Retrieval-Augmented Generation)检索增强生成基础入门

http://www.hlhnt8889177.com/news/794.html

相关文章:

  • 做网站颜色黑色代码多少钱上海宝山网站制作
  • 手机网站字体自适应企点下载
  • 第三方做公司网站海淀区seo搜索引擎
  • 建设银行网站优点免费注册推广网站
  • wap网站域名网络营销 长沙
  • 网站建设国内现状百度问答下载安装
  • 成都行业网站建设网站内容seo
  • 营销 推广 网站百度开户流程
  • 想通过做威客网站上的任务来赚百度广告推广平台
  • 关于申请网站建设的请示windows优化大师值得买吗
  • 苏州做网站设计的公司雅虎搜索引擎
  • 如何建立公司网站是什么网络推广图片
  • 秦皇岛网站建设价格百度收录站长工具
  • wordpress临时域名东莞网络推广优化排名
  • html5作业 建设网站重庆seo排名方法
  • 简历模板免费使用手机版上海百度首页优化
  • 网站建设招聘系统吉林seo推广
  • 河南网站建设价位网络营销公司怎么注册
  • 网站建设中申请备案b2b网站大全
  • 自己有服务器如何架设网站优化网站平台
  • 5个常见的电子商务网站搜索引擎最佳化
  • 教育网站搭建舆情监测
  • 郑州做网站经开区太原百度网站快速优化
  • 制作公司网页英语作文自己的网站怎么样推广优化
  • 线上营销推广方式seo关键词排名优化方法
  • 胶南网站建设多少钱百度引擎搜索
  • 衡水企业网站建设最新推广注册app拿佣金
  • 做兼职一般去哪个网站好广州seo做得比较好的公司
  • 电脑视频wordpress东莞seo排名优化
  • 网站的优化什么做泾县网站seo优化排名